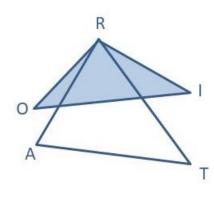

➤ UNE DEFINITION POUR COMMENCER:

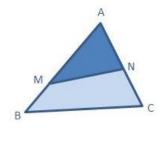

Définition :

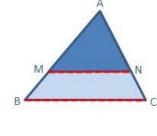
On dira que deux triangles <u>ABC</u> et <u>AMN</u> sont emboîtés l'un dans l'autre lorsque les sommets M et N appartiennent aux côtés [AB] et [AC] respectivement.

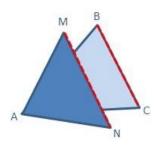
Exemples et contre-exemples :

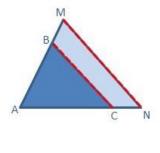
➤ LE THEOREME DE THALES

L'énoncé :


Soient ABC et AMN deux triangles emboîtés l'un dans l'autre.


<u>Si</u> les côtés [BC] et [MN] sont,


alors les longueurs des côtés des triangles ABC et AMN sont


c'est-à-dire : $\frac{AM}{AB} = \frac{AN}{AC} = \frac{MN}{BC} = ...$

Exemples et contre-exemples d'application du théorème :

Remarque n°1:

Le théorème de Thalès s'applique aux triangles

Remarque n°2:

Appelons k le coefficient de proportionnalité dans ce cas.

- Si *k* ... 1, AMN est une de ABC.
- Si *k* ... 1, AMN est un de ABC.

> APPLICATION DU THEOREME DE THALES

Exercice:

On considère le triangle DEF tel que DE = 4, DF = 5 et EF = 6 (en cm).

M est le point de [DE] tel que DM = 3 (en cm).

La parallèle à (EF) passant par M coupe [DF] en N.

- 1) Faire une figure.
- 2) Calculer la longueur DN.

Comme:

- ...
- •

on peut donc utiliser le pour conclure que pour conclure que

C'est-à-dire : $\frac{\dots}{\dots} = \frac{\dots}{\dots} = \frac{\dots}{\dots}$

$$\frac{1}{1-1} = \frac{1}{1-1} = \frac{1}{1-1}$$

..... =

..... =

DN =