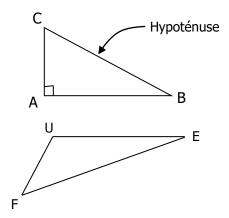
A LA DECOUVERTE DE PYTHAGORE

I. Plus aucun mystere avec le triangle rectangle :

1) QUELQUES MOTS SUR L'HYPOTENUSE :


Définition :

Dans un triangle rectangle, le côté opposé à l'angle droit s'appelle l'.....

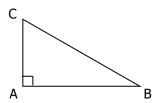
Remarque : L'hypoténuse est le plus grand côté du triangle rectangle.

Attention :

Dans le triangle FEU, [FE] est le plus grand côté du triangle, mais ce n'est pas l'hypoténuse car le triangle FEU

2) QUELQUES MOTS SUR LES ANGLES AIGUS :

Propriété :


Si un triangle est, Alors ses angles aigus sont, (leur somme est égale àº).

Réciproquement :

II. Propriete des trois longueurs d'un triangle rectangle :

1) **ENONCE ET DEMONSTRATION DU THEOREME DE PYTHAGORE :**

<u>Théorème de Pythagore :</u>

Autrement dit :

Si ABC est un triangle rectangle en A,
Alors

2) Premiere utilisation du theoreme de Pythagore : calculs de longueurs :

<u>Premier cas de figure :</u> on connaît les deux longueurs des côtés de l'angle droit et on cherche la longueur de l'hypoténuse.

ONE est un triangle rectangle en O tel que :

ON = 3.2 cm et OE = 4.5 cm.

Calculer la longueur de l'hypoténuse.

0 E

On sait que : ONE est un triangle rectangle en O.

Or, Si un triangle est rectangle,

Alors le carré de la longueur de son hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés.

<u>Donc</u>: $NE^2 = NO^2 + OE^2$

cad $NE^2 = 4,5^2 + 3,2^2$

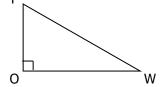
 $cad NE^2 = 20,25 + 10,24$

 $cad NE^2 = 30,49$

Donc NE = $\sqrt{30,49}$ \leftarrow Valeur exacte

Donc NE ≈ 5,5 ← Valeur approchée au dixième

<u>Deuxième cas de figure :</u> on connaît la longueur de l'hypoténuse et celle d'un des deux autres côtés ;


on cherche la longueur du deuxième côté de l'angle droit.

TWO est un triangle rectangle en O tel que :

OW = 7.8 cm et TW = 9.5 cm.

Calculer la longueur de dernier côté.

On sait que : TWO est un triangle rectangle en O.

<u>Or</u>, Si un triangle est rectangle, Alors le carré de la longueur de son hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés.

$$\underline{\mathsf{Donc}} : \mathsf{TW}^2 = \mathsf{TO}^2 + \mathsf{OW}^2$$

$$\overline{\text{cad}} \ 9,5^2 = \text{TO}^2 + 7,8^2$$

$$cad 90,25 = TO^2 + 60,84$$

Donc
$$TO^2 = 90,25 - 60,84$$

$$cad TO^2 = 29,41$$

Donc TO =
$$\sqrt{29,41}$$
 \leftarrow Valeur exacte

Donc TO ≈ 5,42 ← Valeur approchée au centième