EXEMPLES DE FONCTIONS : LES FONCTIONS AFFINES

I. DECOUVERTE DE LA DEUXIEME FONCTION LA PLUS SIMPLE :

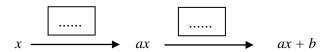
1) OUI EST-ELLE?

Définitions :

Soit a et b deux nombres fixés.

Une fonction qui à un nombre x associe le nombre par ax + b (c'est-à-dire de la forme $x \to ax + b$) est appelée **fonction**

On note f(x) = ax + b l'image de x.



Exemple :

La fonction $f: x \to 4x + 7$ une fonction affine avec $a = \dots$ et $b = \dots$. La fonction $f: x \to 5x - 2$ une fonction affine avec $a = \dots$ et $b = \dots$. La fonction $f: x \to \pi x + \sqrt{7}$ une fonction affine avec $a = \dots$ et $b = \dots$. La fonction $f: x \to x^2 + 7$ une fonction affine avec $a = \dots$ et $b = \dots$.

2) DEUX CAS PARTICULIERS:

A retenir:

1- Toutes les fonctions sont des fonctions affines (en effet, elles sont de la forme f: x → ax + b avec a = et b =)
2- Toutes les fonctions sont des fonctions affines (en effet, elles sont de la forme f: x → ax + b avec a = et b =)

Exemple :

3) CALCULS D'IMAGES ET D'ANTECEDENTS :

Propriété :

- 1- Si f une fonction affine qui n'est pas constante $(a \neq 0)$, alors tout nombre admet une image et une seule par la fonction f.
- 2- Si f une fonction affine qui n'est pas constante $(a \ne 0)$, alors tout nombre admet un antécédent et un seul par la fonction f.

Exemple:

Soit $f: x \to 4x - 5$ une fonction affine.

1- Calculer l'image de 3 par f.

2- Calculer l'antécédent de 19 par f.

Cas particulier des fonctions constantes :

Soit $f: x \to 14$. f est une fonction

- 1- Le nombre 14 admet une d'antécédents par la fonction f.
- 2- Par contre, le nombre 3 admet antécédents par la fonction f.

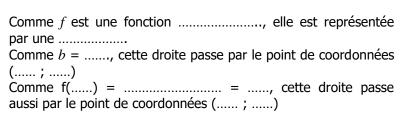
II. REPRESENTATION GRAPHIQUE D'UNE FONCTION AFFINE :

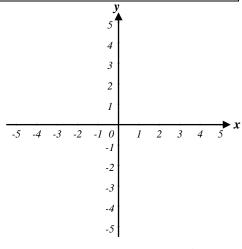
1) COMMENT SE CONSTRUIT LA REPRESENTATION GRAPHIQUE D'UNE FONCTION AFFINE ?

Propriété et définitions :

<u>Exemple :</u>

Soit $f: x \to 2x - 1$ une fonction affine. Représenter graphiquement cette fonction.





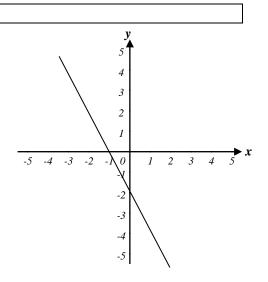
2) COMMENT RETROUVE-T-ON UNE FONCTION AFFINE A PARTIR DE SA REPRESENTATION GRAPHIQUE ?

Réciproquement :

Dans un repère du plan, toute droite représente une fonction affine.

Exemple :

Retrouver graphiquement la fonction f.



3) COMMENT SAVOIR SI UN POINT APPARTIENT A LA REPRESENTATION GRAPHIQUE D'UNE FONCTION AFFINE ?

Propriété :

Soit un point M de coordonnées $(x_M; y_M)$

On appelle (d) la représentation graphique d'une fonction affine $f: x \rightarrow ax + b$.

- 1- Si M appartient à la droite (*d*), alors
- 2- Si, alors M appartient à la droite (d)

III.PROPORTIONNALITE DES ACCROISSEMENTS:

Propriété et définitions :

Soit $f: x \to ax + b$ une fonction affine. Soient x_1 et x_2 deux nombres quelconques. Les accroissements des images f(x) sont proportionnels aux accroissements des nombres x associés. Le coefficient de proportionnalité de ces accroissements est le nombre a.

Remarque :

Exemple:

Cette propriété permet de déterminer le coefficient a d'une fonction affine lorsqu'on connait deux nombres et leurs images.

Exemple:

f étant une fonction affine telle que f(1) = 2 et f(3) = 4.

- 1- Calculer la valeur de *a*.
- 2- Calculer la valeur de *b*.
- 3- En déduire l'expression algébrique de *f*.